Languages

Off-ball behavior in association football: A data-driven model to measure changes in individual defensive pressure

TitleOff-ball behavior in association football: A data-driven model to measure changes in individual defensive pressure
Publication TypeJournal Article
Year of Publication2022
AuthorsHerold M, Hecksteden A, Radke D, Goes F, Nopp S, Meyer T, Kempe M
JournalJ Sports Sci
Volume40
Issue12
Pagination1412-1425
Date Published2022 Jun
ISSN1466-447X
KeywordsAthletic Performance, Humans, Linear Models, Reproducibility of Results, Soccer
Abstract

This study describes an approach to evaluate the off-ball behaviour of attacking players in association football. The aim was to implement a defensive pressure model to examine an offensive player's ability to create separation from a defender using 1411 high-intensity off-ball actions including 988 Deep Runs (DRs) DRs and 423 Change of Directions (CODs). Twenty-two official matches (14 competitive matches and 8 friendlies) of the German National Team were included in the research. To validate the effectiveness of the pressure model, each pass (n = 25,418) was evaluated for defensive pressure on the receiver at the moment of the pass and for the pass completion rate (R = -.34, p < .001). Next, after assessing the inter-rater reliability (Fleiss Kappa of 80 for DRs and 78 for CODs), three expert raters annotated all DRs and CODs that met the pre-set criteria. A time-series analysis of each DR and COD was calculated to the nearest 0.1 second, finding a slight increase in pressure from the start to the end of the off-ball actions as defenders re-established proximity to the attacker after separation was created. A linear mixed model using run type (DR or COD) as a fixed effect with the local maximum as a fixed effect on a continuous scale resulted in p < 0.001, d = 4.81, CI = 0.63 to 0.67 for the greatest decrease in pressure, p < 0.001, d = 0.143, CI = 9.18 to 10.61 for length of the longest decrease in pressure, and p < 0.001, d = 1.13, CI = 0.90 to 1.11 for the fastest rate of decrease in pressure. As these values pertain to the local maximum, situations with greater starting pressure on the attacker often led to greater subsequent decreases. Furthermore, there was a significant (p < .0001) difference between offensive and defensive positions and the number of off-ball actions. Results suggest the model can be applied to quantify and visualise the pressure exerted on non-ball-possessing players. This approach can be combined with other methods of match analysis, providing practitioners with new opportunities to measure tactical performance in football.

DOI10.1080/02640414.2022.2081405
Alternate JournalJ Sports Sci
PubMed ID35640049
German